3 research outputs found

    Approaches for MATLAB Applications Acceleration Using High Performance Reconfigurable Computers

    Get PDF
    A lot of raw computing power is needed in many scientific computing applications and simulations. MATLAB®† is one of the popular choices as a language for technical computing. Presented here are approaches for MATLAB based applications acceleration using High Performance Reconfigurable Computing (HPRC) machines. Typically, these are a cluster of Von Neumann architecture based systems with none or more FPGA reconfigurable boards. As a case study, an Image Correlation Algorithm has been ported on this architecture platform. As a second case study, the recursive training process in an Artificial Neural Network (ANN) to realize an optimum network has been accelerated, by porting it to HPC Systems. The approaches taken are analyzed with respect to target scenarios, end users perspective, programming efficiency and performance. Disclaimer: Some material in this text has been used and reproduced with appropriate references and permissions where required. † MATLAB® is a registered trademark of The Mathworks, Inc. ©1994-2003

    Intrinsically Evolvable Artificial Neural Networks

    Get PDF
    Dedicated hardware implementations of neural networks promise to provide faster, lower power operation when compared to software implementations executing on processors. Unfortunately, most custom hardware implementations do not support intrinsic training of these networks on-chip. The training is typically done using offline software simulations and the obtained network is synthesized and targeted to the hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of artificial neural networks. Block-based neural networks (BbNN), the type of artificial neural networks implemented here, are grid-based networks neuron blocks. These networks are trained using genetic algorithms to simultaneously optimize the network structure and the internal synaptic parameters. The design supports online structure and parameter updates, and is an intrinsically evolvable BbNN platform supporting functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses evolutionary algorithms to evolve interconnections and internal parameters of functional modules in reconfigurable computing systems such as FPGAs. Functional modules can be any hardware modules such as multipliers, adders, and trigonometric functions. In the implementation presented, the functional module is a neuron block. The designed platform is suitable for applications in dynamic environments, and can be adapted and retrained online. The online training capability has been demonstrated using a case study. A performance characterization model for RC implementations of BbNNs has also been presented
    corecore